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LIST OF SYMBOLS

lEnzhatLl.&nm

A; A; A3 A, Cable bending and torsional constants, defined in (38) and (39).
b Binormal unit vector of flow-based coordinate system, defined in figure 5.
B Binormal unit vector of curvature-based coordinate system, dcﬁncd in ﬁgﬁrc d.
) Drag and hydrodynamic loading force per unit length, defined in figure 7
D =D,ia+D,b+D,t. |
Cable stretch, defined in (16) and (17).
E Effective Young's Modulus of cable.

Lihh

Ip
Ip ‘
£, ¢

o}

L L L

Effective Shear Modulus of cable.

Principal moments of inertia of cable per unit length, as defined in

equations (31) and (32).

Cross-sectional bending moment of inertia, (40).

Cross-sectional twisting polar moment of inertia, (37).

Arc length along unstretched and stretched cable.

Bending and twisting moments in cable around the i, i, and 3 axes, as shown
in figure 8.

Total bending moment in cable owing to cable curvature, as shown in figure 9.
Flow-based normal unit vector, figure 5.

Curvature-based normal unit vector, figure 6.

Local radius of curvature of cable.

Vector from inertial origin to cable point.

Flow-based tangent unit vector (same as 3).

~ Curvature-based tangent unit vector (same as 3).

Cable tension.
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1. English Letters (Cont'd)

- u
Uu=49qv
w

—

"l

Wo, W

3. Subscripts
Y2
1,23
nb,t
N,B, T

iv

Cable velocity in inertial reference frame in the x, y, and z directions.
Local current.

Cable velocity with respect to water U = @ - U,.

Shcé: forces in 1 and 2 directions.

Weight per unit length of the unstretched and stmtched cable.

Angle between cable tangent vector and flow, figure 5.

Cable strain e (stretch) = € + 1.

Euler's second angle, see figure 3.

Mass per unit length of unstretched and stretched cable, and added mass.
Local cable curvature = }4, also water density.

Normal stress.

Torques in principal axis coordinate system, shear stresses.

Euler’s first angle, see figure 2.

Euler’s third angle, see figure 4.

Angular velocity in principal axis coordinate system.

Refer to inertial cocrdinates.

Refer to body-fixed coordinates, figure 1.

Refer to flow-based coordinates, figure 5.
Refer to curvature-based coordinates, figure 6. -

Refers to unstretched lengths.
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' FOREWORD

The following report will develop a complete set of field equations for the dynamic motions
of a towed cable system. These equations, when solved, constitute a dynamic simulation of a

towed cable system.

During gentle maneuvers, the important forces in the governing force balances on a cable
system are tension and ky<rodynamic drag. In more severe maneuvers involving highly dynamic
situations, however, the effects of shear, bending, torsion, extension, rotary inertia, and inertia can

be important, and sometimes even mathematically nec&ssary;

| Many dynamic models for simulating the motions of a towed cable system already exist.
Many of these models, however, by ignoring the above-mentioned effects, have restrictive
assumptions built into them. The model represented by the equations developed here does not
~ have these restrictions. Thus, the equations can be used either for more accurate simulations of

o ~ highly dynamic situations or simply for studying the range of validity of simpler models.

Reverse Blank
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A COMPLETE SET OF FIELD EQ: .’ TIONS
FOR THE DYNAMIC SIMULATIJON
OF A TOWED CABLE SYSTEM.

THE COORDINATE SYSTEMS

The total field equations describing the dynamic behavior of a towed system involve four
coordinate systems: 1) a fixed inertial coordinate systera in which to writs the translational
dynamic equations, 2} a body-fixed/principal-axis coordinate system in which to write the
rotational dynamic equations, 3) a flow-based conordinate system in which to write the
hydrodynamic loading, and 4) a coordinate system based on the local cable curvature in which to

express the bending and twisting moments.
THE BODY-FIXED COORDINATE SYSTEM (i, 2, 3)
Consider two orthonormal coordinate systems: a fixed inertial one (X, ¥, Z), and a body-

fixed one (i, 3, 5). (See figure 1.) Three successive rotations, through the Euler angles ¢, 8, and
v, can be performed to transform (X, ¥, Z) to (i, 3, 5).
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)N)

Figure 1. The Inertial and Body-Fixed Systems

The first rotation, through the angle ¢ about the 2 axis, iransforms the (%, ¥, 2) system to
an (X', §’, 2) system where, of course,  coincides with 2. The second rotation, through the
angle 0 about the X’ axis, transforms the (X', §’, 2’) system to an (X”, §”, 2”) system where, of
course, X” coincides with X’. Finally, the third rotation, through the angle y about the %’ axis,
transforms the (X”, §”, 2”) system to our body-fixed system (i, 3 5). Figures 2 through 4 show

these rotations, as well as the resulting rotational matrices M, Mg, and ..
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y cos¢ sing
- Mg=|-sinp cosg 0
N 4 0 0 1
-
\ - ’& 0 :
- - -
- > X Viey'z) = Mg Viays)
Figure 2. The @ Rotation
1 0 0
Mo=|0 cos® sin®
v 0 -sin6 cos@
Re L. ol .
>y ' V(x”y"z') =My v(x’ r'7)
Figure 3. The 8 Rotation
ow
y cosy siny O
M, =|-siny cosy ©
0 0 1
Vi
- v ) iﬁ V(lzs) = nv V(‘-y-zn)
Figure 4. The y Rotation
3
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Thus, the inertial and body-fixed coordinate systems are related as follows,

v(123) =M v(xyz) ' ‘(1)
[ cns@cosy —sinpcosOsiny  sinpoosy +cosp cosOsiny  sinOsiny

M =|-cospsiny -sinp cos@cosy -sin@siny +cospcosBcosy sinBcosy| (3)
| sin9 sin0 ~cos@ sin® © cos@
Fa & PO - o
x-1 y-1 z-1

M=|x-2 §3 23 )
3 3.3 3

and, in equations (3) and (4), we have spelled out the components of the i, i. and 3 unit vectors
in the (X, ¥, 2) system. However, because we will also be needing the components of i’,2’, and

3 inthe (X, ¥, z) system, now is a good time to write them out, too.

COMPUTATION OF 1, ', AND ¥

The derivatives of the cable-fixed unit vectors with respect to unstretched cable arc length
will be derived here (they will be nesded in the next section). By the chain rule we can write

A %  dw Ay
A, dp A, 0 A, 3y I,
A op o, 08 o, oy d
BB w, B M, By
d o9 o, 00 o, oy g
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Thus, finding the derivati\}cs of the (i, 3 3) unit vectors with respect to £; comes down to finding

their derivatives with respect to the three Euler angles, @, 6, and y.

From figure 4 we can write from inspection

ol R

—_—= 2

oy

a2 .

2 = -1 (6)
oy

o3 |

= = 0.

oy

d

= = 0
00
%— = & | )
02" o !
F A |
Using the 1., rotation matrix from figure 4, we can rewrite each double-primed
coordinate system vector in equation (7) in terms of the body-fixed system unit vectors. This
gives
cosy -siny 0] [a1/o6 0
siny cosy 0] [32/08| = | 3 (8
0 0 1| 193/06 ~siny1 - cosy2
which, when solved, yields
5
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=  siny 3
cosy 3 ‘ ‘ 9)

= —sin\yi—coswi.

8IS IS ¥
]

From figure 2, we can write from inspection

2 S

3

% _ _u (10)
%

3% |

Z = o.

k N

Using the M., and ¢ matrices from figures 3 and 4, we can rewrite each single-primed

unit vector in equation (lb) in terms of the body-fixed system unit vectors. This gives

|
\
|

cosy | -siny 0 [3ifop| [cos®siny i+cos8cosy3-sin63
cosBsiny cosOcosy -—sin@ ([33/dp |= —cosy 1+siny3 (11)
5in@ siny s‘ine cosy  cos8]| a3/ap 0

which, when solved, yields

% = cosGi—_sinOcosv?:

a2 = -cosei+sin9sinv§ (12)
09 |

LA = sinGcoswi—sinGsin\vi.

o9
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Finally, substituting cquaﬁons (6), (9), and (12) into equation () gives us the derivatives we

were after:

-~

al

3L,

R
FTA

a3
FY

A

( 0
¢’ cosO +y’
(—9"sin® cosy +8"siny}, ,,

-’ cos@ -y’
0 (13)
(¢’ sin@siny +6"cosy ), ,4

[ ¢”sin® cosy - 0siny
~¢’sin@ siny ~ 6’ cosy

{ 0 123

THE FLOW-BASED COORDINATE SYSTEM (ﬁ, b, i)

The hydrodynamic forces on the cable will be written most easily in a coordinate system

using the local flow, U, and the cable to define the system. The local flow U is the cable velocity

through the water and is thus the cai'e velocity T less any currents: U = ©—-U,. Figure 5

defines such a system.
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i =bxt

b = Uxt/Usina
t =3

U= (UV,wW)

Figure 5. The Flow-Based Coordinate System

In this coordinate system, the tangent vector t is defined as 3, the same tangent vector used
in the body-fixed coordinate system. Next, using t and U to form a cable/flow plane, the
b nciimal b is defined normal to the £/T plane. Finally, using t and b, the normal vector # is
[ : formed, completing the orthonormal set (ﬁ, b, i)., Thus, performing the algebra Méted in

figure 5, and using the results of equations (3) and (4), we can write:
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W sin@ sin® cos® — U cos@ cos® — U cos@ cos sinO sin® -
=V cos@ sing sinOsin®
=U cos@sing sin®sin6 — V sin@ sin@ sin0 sin® — V cos coso
— W cos® cosO sin@
-V cos® cosO sin6 — W sin@ sin6 + U sin@ cosO sin®

V cos@ + W cos sin@
W sin@ sin® — U cos®
~U cos@ sin@ — Vsing sin@ xyz

sing sin@

t= 1—cos@sin6

.

cosd J,.,

coso = t—,— =(Usin¢ sin@- Vcos¢ sin8 + W cos8)/[U].

THE CURVATURE-BASED COORDINATE SYSTEM (&, B, 1“)

A curved line in space can be used to define three directions: tangent, normal, and
binormal. Consider figure 6.

Ly - | - .
e T - - N

) [ T B . B
— T T S et

PR y e T K =
- o - —

i I - — .

S e ’ = - - :
e T T s - -

v

Jxyz

(14)
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o 2 =
|

-Hp TV L»
1]

" p20

x
A3

Figure 6. The Curvature-Based Coordinate System

The tangent vector T in this coordinate system is the same as that in the flow-based

coordinate system; it is also defined as 3, the body-fixed tangent vector.

The normal vector N is defined by the curvaturel; in other words, by the way T changes.
Locally, the curvature of the line defines a plane, the plane of curvature. T is orthogonal to T,
but its magnitude is equal to the curvature, not to unity. Thus the reciprocal of the curvature, the
radius of curvature p, is used to fofm a unit vector oﬁt of T". Finally, the binormal vector Bis
formed from the cross product of T and N. This completes our orthonormal set (I:I, B, 'i‘). The
N/B plane is called the normal plane, the B/T plane is called qlc osculating plane, and the T/N

\

i

plane is called the plane of curvature. \

10
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THE DYNAMIC EQUATIONS — TRANSLATION

Consider a differential section of cable of stretched length d¢, as shown in figure 7.

Figure 7. Force Balance cn Cable Segment

The external forces acting on the cable are the weight per unit length W and the hydrodynamic load
per unit length D. The internal forces acting on the cable segment are, in our body-fixed

coordirate system (i, 2, 3), the tension T, and two shears, V; and V,. Thus, a simple force

balance yields
aT ., oV v - .
3 hild & 2% - 7 = . .
, azd” azd” 3% df - wzdl + Ddf = pdfu (15)

In equation (15) we use our sign conventio;x wherein forces are considered positive when
drawn in a positive direction on a positive face. Both w, the weight per unit length, and p, the
mass per unit length, are written in terms of the stretched length, df. We can write everything in

terms of the unstretched length, d¢,, by introducing the strain, €, and the stretch, e:

11
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dlo dl() dlo '
ey o

p=FEe (18)

) c

w= 20, (19)
¢ : .

and rewrite equation (15) as

9V, . oV oT . " . . |
—1 — - = T 2
azo‘“_lazo*azo woz +eD=pyu | (Q)

Vi+V3+T —woz+eD=pgt, 21

where the " *" refers to differentiation with respect to £,, and the "*" refers to differentiation with
respect to time. Equation (21) is deceptively simple because only the wg term and the U term are
in the inertial coordinate system (X, ¥, 2). Written explicitly in terms of the body-fixed and flow-
based coordinate systems, equation (21) becomes
Vii+vi"+Vj2+Vv2+T3+T%
(22)

-woZ + eDyft + eDt = po (8% + V§ + wz),

12
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where D, is the normal component of the drag force per unit length and D, is the tangential
component, both to be specified later.

To rewrite equation (22) in terms of only the fixed reference frame (X, ¥, z), we must first
replace the derivatives of the body-fixed unit vectors (i', %, 5’) by their values given in
equation (13). Next, we must replace all non-inertial unit vectors (i, 2,3, A, i) by their values

given in equations (4) and (14). The result is our three translational dynamic equations of motion:
K =ma

T’ (sing sin9)

+T (¢’ cos@ sin0 + 8’ sin cos6)
+ V{ (cos cosy — sing cos@ siny)
+V, (9’ sing cosy — y’ cos siny — 9’ cosp cosO siny

+0’sin@ sin@ siny — y’ sin @ cosO cosy) (23)
+ V3 (—cos@ sin y - sin @ cos cosy)
+V, (¢’ sin@ siny — y’ cos cosy — ¢’ cos@ cos cosy

+0’sin@sin@ cosy + Y’ sin@ cosO siny)
+-|ch|:%& (—U cos? ¢ sin20 — U cos?0 - V cosp sin@ sin® @ + W sin@ cos8 sine)
+¢D, (sing 5in6)

={g .

13
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T’ (~cos sin8)
+T (¢’ sin@sin®— 6’ cosg cosG)
+ V{ (sin@ cosy + cos¢ cosO siny)
+V, (9’ cosp cosy — g’ sin@ siny — ¢’ sin@ cosO siny
-8’ cos@ sin® siny + y’ cosP cosO cos ) ' (29
+ V3 (~sin@ siny + cos@ cosé cosy)
+V, (— 9’ cos@ siny - y’ sin® cosy — @’ sin@ cos9 cosy
— 0’ cos@ sin® cosy — y’ cos P cosO siny)
+ _e_Qn_ (—U cos@ sin@ sin26 - V sin?¢ sin26 - V cos?0 - W cos¢ cosd sine)
[U]sinc .
+¢eD, (—cos@ sin6)

=}g V.
FFE = m a
T’ cos
+ T (- 6’sin0)
+V{ (Lin@siny)
+V, (0’ cosO siny + y’ 5in cos ) S (25)
+ Vj (sin@ cosy)

+V, (6’ cosO cosy - y’ sin0 sin y)

eD
+=——0—(Usi in@ - in® — W sin?
Tlsine (U in@ cosOsin® - V cosp cos0 sin® - W sin 9)
+¢D, (cos6)

14
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THE DYNAMIC EQUATIONS — ROTATION

Consider a differential section of cable as shown in figurc 8.

G _aV
M aii_d‘ Vl"'a'j'#
S
Mz“T‘zz '-f’%f%‘ 1 :
o _3M 7
M- £
= oM
¥, +23 \Ml + i 4
' 72 o M, +2M2 gs
..2‘*317‘51 \Mz —3-:‘42
BN ¥
L
o2

Figure 8. Moment Balance on Cable Segment

As shown in figure 8, the cable segment is subjected to the internal shearing forces and tension
(%, V2, and T), as well as the internal bending and twisting moments (M, M;,and M,). By

taking moments around the center of the segment, we need never introduce the weight and drag
forces (whose torque contributions are of a higher order). In the body-fixed/principal-axis |

coordinate system, the dynamic equations of rotation are

‘l = Ild)1+(l3—lz)0)20)3 _ »
T = Lay+(h L)oo (26)
3 = Laoy+(-L)o 0,

where 1; is the torque about the ith axis; I;, the principal moment of inertia about the ith axis; and
®;, the angular speed about the ith axis.

15
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From figure 8, the net torque on our differential segment is

M, as + M, ds + oM,

vt = 5 at ot

df+Vyde2-Vv,dei.

By introducing the unstretched length [equation (17)], equation (27) is changed to

dt = Mjdfg+M5dly + M dly + Vyedly2 - Vyedtyi
T o= M +M+ M +Vied-V,ei

T o= MA+MT+M2+ M2 + M3+ M, 3 +Ve2 - V,el.

The three principal moments of inertia of our segment of length d¢ are:

dll =dt2 =-}udlr2
dly =4 pdert.

Again, we introduce the unstretched lengths

=1 =1,
I3 =213, and
16 = %uorz.

16

27

(28)

(29)

(30)

(3D

(32)
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In the body-fixed/principal-axis coordinate system, the angular velocity is written in terms

of the Euler's angles as (sce reference 1):

@ sinB siny + § cosy
D={@sinOcosy —Osiny} . (33)
¢ cosO+y 123

Finhlly, using equation (33) for the angular velocitiss, equation (32) for the moments of
inertia, equation (30) for ihe torques, and equation (13)‘fo:' the denivatives of the unit vectors, ins

governing dynamic equations of rotation (26) can be rewritten as:

| M{ + M, (-9’ cos8 - y’) + M, (¢’ sinB cosy — 8" siny) - eV,
-1y {(';3 sin@ siny + 8 cosy + (bz cos6 sin cosy (34)
+2¢ V¥ sin@ cosy - 26§ siny}=0

| M, (9’ cos8+ y’)+ M3 + M, (- ¢’sinBsiny - 6" cosy) +eV,
Y P {iﬁ sin@ cosy — 8 siny ~ 2 cosO sin siny (35)
~2¢Vsin@siny - 20y cosv} =0

M, (- ¢’ sinB cosy + 8’ sin ) + M, (¢’ sin® siny + 8’ cosy)
+M!=2I, {@cose-¢ésine+\'p}=o. (36)

17
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CONSTITUTIVE AND KINEMATIC RELATIONS

In the second and third sections, we developed six dynamic equations in 13 unknowns:
three moments (M,, M,, M, ), three forces ( V), V, T), three velocities (u, v, w), three angles
(9.6, w), and the stretch e. In this section we will develop the seven equations needed to close

the system.

CONSTITUTIVE EQUATION FOR THE TWISTING MOMENT

According to the linear theory of elasticity, the twisting moment and the twist per unit
length are linearly related through the shear modulus and the polar cross-sectional moment:

M, = GIpgt. (37

If we assume that the cable is not torque-balanced, then we can write that the twisting moment is

also linearly related to the straine =e - 1:

M, = A ¥ +As(e-1). (38)

CONSTITUTIVE EQUATION FOR THE TENSION

Again, according to the linear theory of elasticity, the tension and the strain are linearly
related through Young's Modulus and the cross-sectional area:

T = EAe.

18
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Again, if we assume that the cable is not torque-balanced, then we can write that the tension is also

linearly related to the twist:

T=A(e-1)+A, . (39)

CONSTITUTIVE EQUATIONS FOR THE BENDING MOMENTS

According to pure bending theory, which we will use despite the fact that shears are
present, the bending moment is linearly related to the bending rigidity (EI), and inversely related
to the radius of curvature (p). Figure 9 shows this relazionship in terms of the (I:I, B, 'i‘)
coordinate system, the coordinate system based on the local curvature, developed in the first

section.
El 4
== B
Figure 9. Pure Bending
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Because the bending moment is defined as being in the binormal direction, we can write,

from figures 6 and 9,

Mg = Z2B = ERTx gt (40)
or
cﬁs = EIB'i‘x'i". A 3]
Using equation (13) for T* =33/a¢,, we can write
~(~@’sin@siny - 6" cosy)
TxT = ¢’ sin@ cosy — 0’ siny (42)
0 123 '
or
@’ sinBsiny + 8" cosy |
eMp = Elg {¢’sin@cosy —-0’'siny; 43)
o 123 |

where the cross-sectional bending moment Iy is for bending around the B axis and is, fora

homogencous cable, tR* /4. Thus, the constitutive equations for the two bending moments are

eM; = Elp (¢"sin@siny + 6’ cosy) (44)
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eM, = Elg (¢’sinBcosy - 0’siny). | (45)

KINEMATIC RELATIONS

The (x, y, z) coordinates of a point on the cable, and the (@, 8, y) angles at that point, are
~ independent. However, the way in which the coordinates change along the cable is determined by
the orientation of the cable, by the angles. Specifically, the cable coordinates change in the

N ¢ 5 -
, N - N

direction of the tangent vector
of &
-— = 3, 46
l 3 (46)
- ' which, written out by components, gives us three kinematic equations:
Y l x’ = esin@sin®, (47)
y = —ecos@sin@, ' | (48)
\\,\.
' \l z’ = ecos6. \ (49)
.~ N \
1
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SUMMARY

In this report we developed a complete set of field equations describing the dynamic
behavior of a towed cable and/or array. The cable has bending stiffness, torsional stiffness,
extensional stiffness, inertia, and viscous drag. The viscous drag (as well as added mass) is left as

a generic term to be defined by the users according to their specific needs.

The complete set of field equations consists of 13 nonlinear partial differential equations
and is repeated here for conciseness:

L FF = m a,

e T’ (sing sin®@) ‘
/ + T (¢’ cosp sin@ + 6 sin cosB)

S + V{ (cos ¢ cosy — sin@ cos0 sin y)
- B +V; (-9’ sing cosy - y’ cos@ siny — @’ cos@ cosO siny

+0’sin@ sin@ siny ~ y’ sin@ cos cos y) (50)

+ V3 (—cos@ sin y — sin@ cos8 cosy)
e + V, (¢’ sin@ siny — y’ cos cosy — @’ cosP cos cosy
’ +0’sin@ sin@ cosy + Y’ sin@ cosO siny)

L +ﬁs—?nn;(—u cos? @ sin?8 - U cos?0 - V cos sing sin? 6 + W sin cos6 sin6)

; +¢D, (sing sin6)
- =(o + Ha) 0.

X__‘
. ‘u
N
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Fy = m a,

T’ (~cosq sin@)
+ T (9’ sin@ sin - 6’ cosp cos6)
+ V{ (sin@ cosy + cos® cos0 sin )
+ V) (9" cosp cosy ~ y’ sin@ siny — ¢’ sing cosO siny
-0’ cos@ sin siny + W’ cos@ cosO cosy) y (51)
+ V3 (~sin@ sin y + cos@ cos6 cosy)
+V, (- ¢’ cos@ siny — y’sing cosy ~ 9’ sin@ cos0 cosw
=6’ cosq sin@ cosy — y’ cosp cosO siny)

|U| oy (—U cosQ sin@ sin?0 - V sin2 i) sin20 - V cos20 — W cosm cosO sme)

+eD, (—cos9 sinB)
= (l‘o + ua) v.

F,L = m a,

T’ cos®
+T (- 0'5in6)
+ V{ (sin@ sin y)
+ V] (6’ cos@siny + y’sin cosy) (52)
+ V3 (sin@ cosy) |
+V, (6’ cos® cosy — y’ sin@ sin )

+ -223—- (U sin@ cosO sin® — V cosp cosOsin0 - W sinze)
JU|sina _
+eD, (cosH)

=(llo+ H.)W

M| + M, (-9’ cos® - y’) + M, (¢’ sin8 cosy — 8’ siny) -eV,
~To {$ sin@siny + 8 cosy + §? cosB sinB cosy » (53)
+2¢sinBcosy —28ysiny}=0.
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5 M, (9’ cos@+y’')+ M3 + M, (- ¢’sin@siny — ' cosy) + eV,
I {6 sin@ cosy — 6 siny - ¢> cos0 sin @ siny (54)
| ~2¢ysin@siny —20y cosy}=0.
6. M, (— ¢’ sin@ cosy + 0’ siny) + M, (9" sin0 siny + 6’ cosy)
+M; = 21, {§ cos® - p8sin6 + } = 0. | (55)
1. M, = Ay ¥ +A; (e -1). (56)
8. T = A(e-1)+A ¥, (57
9. M, = Elg (¢’ sin@siny +©’ cosyr). (58)
10. eM, = Elg (9’sin@cosy —0’siny). (59)
, d, . .o |
11 v = a—(esm(psme). (60)
, d . ' _
12, vV = —E(ecosqasme). (61)
, d : o
13. w = -;(ecosG). (62)

The 13 unknowns are the 3 forces (V;, V,, T), 3 moments (M;, M3, M, ), 3 velocities
(u, v, w), 3 angles (9, 6, ), and the stretch e. Written as such, the 13 equations (50-62) are first
order in space and second order in time. By introducing the 3 angular velocities,

1=9, - (63)
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1=6,and | (64)
0=V, | (65)

we would increase our system to 16 equations in 16 unknowns and become first order in space and

time.

Finally, because these equations will potentially be used to study the higher order effects of
rigidity and torsion, we can simplify these equations for comparison and reduce them to the more

standard six unknown systems written here in equations (66) through (71):

T’ (sin@ sin6)

+T (¢’ cospsin® + 6’ sin@ cos0) (66)

+ -—Dn— (—U cos® @sin®0-U cos?0-V cos@ sin@sin2 6 + W sin @ cos8 sine) |
JUlsina |

+D,sin@sin®=(po+ p,)u

T’ (~cos@ sin6) _
+T (¢’ sing sin® — 6’ cos cos6) (67)

+ _n_lUIIZina (—U cos®sin@ sin?>6 — V sin? @ sin20 ~ V cos?0 -~ W cos@ cos® sine)

+D, (—cos@sin8) =(pq + 1,) v

T’ cos0+ T (- 6 5in@)

D . , .2
+ﬁ;§l—a—(Usmqmosesmﬂ—Vcos@cosOsmB—Wsm 9) (68)
+D; cos8-wg = (g + B,) W
. d,. . . "
i = a—t-(sm(p sin6) (69)

25
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<-
"

d -
£ 0
"5 (cos@ sin8)
. d
W= o (cos®).

The solutions to these equations wﬂl be the subject of a subsequent report.

(70)

an
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